Exercise 20

Let $\mathbf{F}(\mathbf{x})=\left(r^{2}-2 r\right) \mathbf{x}$, where $\mathbf{x}=\langle x, y\rangle$ and $r=|x|$. Use a CAS to plot this vector field in various domains until you can see what is happening. Describe the appearance of the plot and explain it by finding the points where $\mathbf{F}(\mathbf{x})=\mathbf{0}$.

Solution

Start by rewriting the vector function so it's in terms of x and y only.

$$
\begin{aligned}
\mathbf{F}(x, y) & =\left(r^{2}-2 r\right) \mathbf{x} \\
& =\left(r^{2}-2 r\right)\langle x, y\rangle \\
& =\left\langle x\left(r^{2}-2 r\right), y\left(r^{2}-2 r\right)\right\rangle \\
& =\left\langle x\left[\left(x^{2}+y^{2}\right)-2 \sqrt{x^{2}+y^{2}}\right], y\left[\left(x^{2}+y^{2}\right)-2 \sqrt{x^{2}+y^{2}}\right]\right\rangle
\end{aligned}
$$

Using VectorPlot in Mathematica gives the following picture.

Inside the circle of radius 2 , the vectors point radially inward; outside the circle of radius 2 , the vectors point radially outward. $\mathbf{F}(\mathbf{x})=\mathbf{0}$ when $r=0$ or $r=2$.

